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LEl’TER TO THE EDITOR 

Action and kinematical integral geometry 

M A del Olmo and M Santander 
Departamento de Fisica Tebrica, Facultad de Ciencias, Universidad de Valladolid, 4701 1 
Valladolid, Spain 

Received 3 May 1989 

Abstract. An interpretation of the classical non-relativistic or relativistic action for a point 
free particle is given in terms of Galilean or Minkowskian integral geometry. That interpre- 
tation remains valid for some interactions. 

As is well known, the action for a point particle in relativity is proportional to the 
length of its worldline, and therefore has a direct geometrical meaning. That is not 
the case for the non-relativistic mechanics, where the worldline length is the (universal) 
time, which is path independent, whereas action does not have any known geometrical 
interpretation. 

In plane Euclidean geometry there are some relationships between the length of 
any (open) arc of curve and the measure of the subset of all straight lines which 
intersect this arc; their study belongs to integral geometry [ 13. A naive attempt to find 
an analogous result for curves in classical or relativistic spacetimes gives divergences 
in the integrals, due to the non-compact nature of the ‘rotation’ (i.e. boost) subgroups. 
We report here some results of a more refined attempt [2] which allows one to associate 
to every closed loop (i.e. two arcs of time-like curves with the same endpoints) an 
integral over the set of all (time-like) lines of the number of oriented intersections with 
the loop; this quantity is free of divergences, and surprisingly, its value turns out to 
have an unexpected meaning: it is equal to the diflerence of actions of a free particle 
along the two paths, both in relativistic and non-relativistic mechanics. 

These results are very satisfactory because they show that a purely geometrical 
analysis points not to the action for an open path (which is not gauge invariant), but 
to the action along a closed path which is the gauge-invariant relevant quantity in 
quantum mechanics, as shown in Feynman’s formulation. 

Finally we show that the aforementioned relationship does not only hold for the 
free case but also for linear and quadratic potentials. In another direction, it is possible 
to extend these results to all plane Cayley-Klein geometries, where the connection 
with the generalised Gauss-Bonnet theorem is clearly apparent. A detailed exposition 
will be the subject of two forthcoming publications [2,3]. Some aspects of plane 
Cayley-Klein geometries can be found in [4-71. 

The length L of a line r in the Euclidean plane appears in the context of integral 
geometry [ l ]  in the following connection. If r is a piecewise differentiable (closed or 
not) curve, and Nr( I) denotes the ordinary number of intersections with r of a generic 
straight line 1 with Cartesian equation x cos 8 + y sin 8 = p, we have the Cauchy-Crofton 
formula 

Nr( I )d l=2Lr  (10) I 
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where dl  = dp A dB is a 2-form in the set of unoriented lines, determined (up to a 
factor) by the condition of being invariant under the Euclidean group. A further 
variation of this formula can be obtained by splitting a closed curve into two arcs rl 
and r2 which are considered as two oriented space paths from A to B or as a loop 
based on A and made up of two arcs rl and -r2, with different orientations. If we 
define an ‘oriented total intersection number’ of a straight line 1 with (I‘,, r,) as the 
number of intersections of I with r, minus the number of intersections with r2, we obtain 

Nr(1)  dl=2(L,-Lz).  (1b) I 
5 L,n M q # O  

We only recall that ( l a )  is a particular instance [ 13 of the formula 

u q ( M 4 )  (2) 
On * * On-,+, 
0,. . . 0, N (  L, n M q ,  dL, = 

for compact q-dimensional manifolds in n-dimensional Euclidean space, On being the 
measure of the n-dimensional sphere. 

Consider now a motion in non-relativistic spacetime given by a time-like curve r 
and for the sake of simplicity let us take one space dimension only. It is almost evident 
that (1 a )  does not have any sensible analogue, the difficulty being traced back to the 
non-compact nature of the subgroup of Galilean boosts, which makes divergent the 
integral in the RHS of ( l a )  (with an invariant measure d l  = dk A ds  in the set of time-like 
straight lines x = kt + s). This is also the case, mutatis mutandis, in Minkowski space- 
time. There is, however, a new feature in these two cases owing to the fact that a 
(time) orientation can be invariantly assigned to time-like lines. A relative orientation 
f can be invariantly assigned to each intersection of two time-like lines, according to 
whether the orientation of these lines is the same or opposite. If now we sum over all 
the intersections of r with 1, counting each positive intersection as 1 and each negative 
intersection as -1, we obtain an ‘oriented total intersection number’ ( N r ( l ) .  Consider 
two points A and B in spacetime and rl , r2 two future time-like curves from A to B, 
given, say, by 

The pair (r,,r2) can be considered as a closed (piecewise differentiable) time-like 
loop, which is made up of a future arc from A to B and a past one from B to A with 
the opposite orientation. The interesting point is that the integral in ( l b )  with the 
oriented total intersection number Nr is free of divergences, and defines a geometric 
quantity associated with the loop. This happens both in the non-relativistic as well in 
the relativistic case. But in the non-relativistic case the RHS of ( l b )  cannot surely be 
the difference of geometric lengths of the arcs rl and T2, which is identically equal to 
zero (universal time). What is the meaning of this quantity associated with the loop? 
The somewhat surprising answer is the following. 

Theorem 1. Let Ti, i = 1,2, be the two differentiable future time-like curves in the 
non-relativistic (1 + 1)-dimensional spacetime given by (3). If Nr( k, s) denotes the 
total oriented number of intersections of the future time-like straight line (k ,  s) with 
r = (r, , r,), the following integral relation holds: 

Nr(k, s) dkAds=  [ ( ~ l ( t ) ) Z - ( ~ 2 ( t ) ) 2 ] d t .  J (4) 



Letter to the Editor L765 

Hence the integral of the total oriented intersection number over the set of all 
future time-like straight lines equals (twice) the diference of the actions (per unit mass) 
of a free particle going from A to B through rl and r2. The same connection does 
also happen in the relativistic case, where the result is less appealing because the action 
is defined there as proportional to the path length, and (4) is but an extension to this 
case of ( la).  

These results can be linked to the Gauss-Bonnet theorem for the set of all future 
time-like straight lines. Area S and angular excess a + p - y of a triangle (a, f l  internal 
smaller angles, y the extemal larger one) are related in any two-dimensional Rieman- 
nian space of non-zero constant curvature K by 

but that relation degenerates into an identity for K = 0, leaving the area S to be 
independent of the (identically equal to zero) angular excess. Written in this way, ( 5 )  
holds for the nine plane Cayley-Klein geometries, which includes the geometries of 
the set of all lines (time-like when needed) in the Euclidean, Galilean or Minkowskian 
planes (named with the prefix CO-; see [SI for a specific discussion of the Minkowskian 
case). The easiest way to see the relation between (4) and ( 5 )  is to take for r, a segment 
of future straight line from A to B, and let r2 be a curve made up of two future straight 
segments from A to C and from C to B. Let a, b, c be the lengths of the segments 
CB, AC, AB; so that LI  = c, L2 = a + b and L, - L2 = a + b - c. Hence the triangle ABC 
determines a dual triangle in the set of all future time-like straight lines and the absolute 
value of the integral in the RHS of (1 b) can be seen to be equal to twice the area IS*l 
of that dual triangle; also by duality the angular excess of the dual triangle is equal 
to a + b - c. So we have an equation 

K*IS*( = a+ b-  c ( 6 )  

with K *  = 1, 0, -1 for the Euclidean, Galilean and Minkowskian cases respectively 
(the constant curvature of co-Euclidean, co-Galilean and co-Minkowskian planes). 
As a consequence, we recognise why in the Euclidean and Minkowskian cases Nr( I) dI 
appears as twice the difference of lengths, but is independent of the (identically equal 
to zero) difference between the lengths of the two paths for the Galilean case. 

For the (2+ 1)-dimensional and (3 + 1)-dimensional cases, theorem 1 has a straight- 
forward generalisation. We give only the statement. 

Theorem 2. Let Ti, i = 1,2, be the two differentiable future time-like curves in the 
Galilean (3 + 1)-dimensional spacetime, as in (3). If Nr(k,  s) denotes the total oriented 
number of intersections of the inertial 3-plane I ,  with r = (r, , r2), the following integral 
relation holds: 

The above results hold for a free particle. Can these results be extended to the 
case of a particle interacting with an external field? For this case the natural candidates 
for ‘straight lines’ are the ‘true’ motions of the particle under this field. The main 
difficulty is then to define a density for the set of the ‘physical’ motions. In the free 
case, the kinematical group (Galilei, PoincarC) is the symmetry group of motions, and 
the requirement of invariance under this group determines (up to a factor) the density. 
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But the presence of a potential breaks the kinematical symmetry. Returning for a 
moment to the geometrical context, formula ( l a )  also holds in a surface of non-zero 
curvature, with an adequate density for geodesics. Therefore one can hope that 
equations (4) and (7) can be extended to cover the motion of a point particle in an 
external potential, where now the RHS are replaced by the difference of actions with 
the potential terms. Whereas a complete proof of this conjecture is not available, it 
is possible to show explicitly that the results of theorems 1 and 2 (insofar as they say 
that ‘the measure of geometric elements intersecting r’ is proportional to ‘the difference 
of actions along rl and r2’) are also valid for time-independent polynomial potentials 
of degree one or two. 

We are going to develop here the oscillator one-dimensional case. The potential 
is V ( x )  = i ( w 2 x 2 )  and a physical motion given by 

(9) 

can be parametrised by (k, s). Define a density dl  = dk A ds for these motions. Let 
(r, , I“,) be a time-like curve where A and B are the common endpoints of the curves 
rl and T2. A line (k, s) intersects Ti at the point (t, x i (  t ) )  if and only if s cos(wt) = 
wxi( t )  - k sin(wt). This equation determines s as a function of k, except for a zero 
measure set of values of t, which is irrelevant when integrating. Then 

x ( t )  = ( s / w )  cos(wt)+(k/w) sin(wt) 

s i ( t )  = (wxi(t))/cos(wt)- k tan(wt). (10) 

This is the equation of a line in the (k, s) plane. When t varies, the motion of this 
line is a rotation with centre given by the solution of dsi( t ) /dt  = 0. The computation 
of the integral in the LHS of (1 6 )  is made in two steps. First the integral over all lines 
of the number of intersections of a generic line (k, s) with rl is: 

A similar expression is obtained for T2. Then the number of the total oriented 
intersections with r is H = HI - H2: 

With s( t )  given by (lo), dsi( t )  = 0 implies that 

ki( t )=(dxi( t ) /dt)  cos(wt)+xi(t)w sin(wt). (13) 
Then (12) gives after a short computation 

H = ~ l ~ { [ ( x l ) 2 - ( x ~ ) 2 ] + w 2 ~ ( x , ) 2 - ( x 2 ) 2 ]  tan2(wt)+2w(xlxl -x2x2) tan(wt)} dt. 

An integration by parts using the boundary conditions finally gives 

I Nr(I)  d l  = 2  ~ , ~ { ~ ~ ( x ~ ( t ) ) 2 - ~ ~ 2 ( x , ( t ) ) 2 ~ - ~ ~ ( ~ 2 ( t ) ~ 2 - ~ 2 ( ~ l ( ~ ) ) 2 ~ ~ d ~  (14) 

which is the announced result. Why is the choice d l = d k ~ d s  the correct one? The 
answer lies in the additional symmetry of the oscillator: the Euclidean structure of the 



Letter to the Editor L767 

set of all oscillator motions. It is well known that the harmonic oscillator can be 
considered as a free particle in an oscillating Newton-Hooke universe, i.e. in a spacetime 
manifold whose kinematical group is the Newton-Hooke group. The homogeneous 
subgroup is isomorphic to the Euclidean group, which acts on the set of motions in 
the standard form, the coordinates s and k being Cartesian coordinates on this plane 
and if we require a density invariant under the complete Euclidean group, the only 
choice is d l  = dk ~ d s .  

For the case of a particle in an homogeneous force field a similar result can be 
obtai'ned, because the set of motions can be also identified with an homogeneous space 
of the Galilei group, and a density can be singled out applying the same ideas. Therefore 
we have the following result. 

Theorem 3. For a particle in a homogeneous force field or an harmonic oscillator, a 
density d l  can be defined in the set of all physical motions in such a way that the 
integral of the total number of intersections with (r, , r,) over the set of physical 
motions is equal to the difference between the actions for a particle moving along r, 
and r2, with the corresponding potential V(x), i.e. 

1 wu dl  = 2  1,: ~[ i (x , ( t ) )~ -  ~ ( x , ( t ) ) ~ - [ t ( x , ( t ) ) ~ -  v(x,(t))l} dt. (15)  
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